

UNIVERSITY OF NAIROBI

DEPARTMENT OF ENVIRONMENTAL AND BIOSYSTEMS ENGINEERING

FEB 540: DESIGN PROJECT DRAFT REPORT

2014/2015 ACADEMIC YEAR

TITLE: DESIGN OF A SOLAR POWERED PISTON PUMPING SYSTEM IN NKANDO VILLAGE, LAIKIPIA COUNTY

SUBMITTED BY: OCHIENG RENATO AWUOR

REG. NO.: F21/1715/2010

DATE OF SUBMISSION: 6TH MARCH, 2015

NAME OF SUPERVISOR: MR. ORODI ODHIAMBO

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF BACHELOR OF SCIENCE IN ENVIRONMENTAL AND BIO SYSTEMS ENGINEERING

Contents

1.	INT	RODUCTION	4
1	.1	BACKGROUND	4
1	.2	STATEMENT OF THE PROBLEM AND PROBLEM ANALYSIS	4
1	3	SITE ANALYSIS AND INVENTORY	5
1	.4	OVERALL OBJECTIVE	5
	1.4.	1 SPECIFIC OBJECTIVES	5
1	5	STATEMENT OF SCOPE	5
2.	LITE	RATURE REVIEW	6
	Mal	awi Solar Powered Water Pump System	6
3.	THE	ORETICAL FRAMEWORK	9
	Clas	sification of pumps	9
	The	Photovoltaic System	11
	The	solar powered pumping system	
	Pun	p sizing and selection	15
	Pho	tovoltaic array sizing:	
4)	MET	HODOLOGY	20
A	flow	chart demonstrating the concept design process.	22
5.	RES	ULTS	23
5)	DISC	CUSSION	
6)	CON	ICLUSION AND RECOMMENDATIONS	
7)	BUD	OGET	Error! Bookmark not defined.
8.	wo	RK SCHEDULE (Ghant Chart	Error! Bookmark not defined.
9)	REF	ERENCES	
10.	А	PPENDICES	35
A	PPEN	DIX 1: IMAGES OF THE SITE	35
A	PPEN	DIX 2: map of the farm (google earth)	
A	PPEN	DIX 3: A WATER PIPE SIZING CHART FOR PLASTIC (PVC) PIPES	
A	PPEN	DIX 4:	Error! Bookmark not defined.
A	PPEN	DIX 5:	
		ΙΟΙΧ 6: ΟΙ ΙΝΛΑΤΕ ΟΑΤΑ	40

APPENDIX 7:	49
APPENDIX 8: DESIGN SKETCHES	62

1. INTRODUCTION

1.1 BACKGROUND

Solar-powered water pumps have been implemented as an alternative water abstraction measure in many parts of the world such as Malawi, India and Brazil. Kenya is slowly embracing the concept of solar energy, in water abstraction projects especially, in an effort to curb the effects of climate change on drought and famine. In 2012, the Kenyan government had plans to install 2000 solar powered piston pumps in the arid regions of Kenya in an aim to reduce the water shortages caused by unpredictable rainfall, largely associated with climate change. One such beneficiary of this initiative was Tseikuru District located 230 kilometers east of Nairobi. The Ministry of Public Health and Sanitation had entered into a partnership with Bola Associates and a US-based, DACC global, to supply and install the systems which comprised of solar panels, submersible pumps, purification systems and holding tanks. The cost of each system was found to be approximately 11 million Kenyan shillings including the borehole drilling cost. (Kamadi, G. 2012). Solar powered pumping systems are a reliable and environmentally sustainable solution to water abstraction problems in the country.

1.2 STATEMENT OF THE PROBLEM AND PROBLEM ANALYSIS

The local farmers in Nkando village, Laikipia County do not have in place any form of machinery to abstract and convey water from the soon to be constructed water ponds to their farms which will force them to manually collect and transport the water they need for irrigation purposes. This will make it tedious and laborious to access the much needed daily quantities of water.

A manually operated pumping system would provide a credible solution to the problem of accessibility of water, because the system is simple to use and more affordable for the locals. However, this pumping system is disadvantaged in terms of the time and energy that would be required to operate it in order to provide the daily quantities of irrigation water for the farmers. Consequently, the overall efficiency of the manually operated system is lower compared to the efficiency of, for instance, an electric water pumping system.

Electric water pumping systems are run by the national grid or diesel generators. Fuel and electricity are quite expensive, for example, the cost of diesel in Nanyuki town, as quoted by the Energy Regulatory Board as from April 15th, 2015, to May 14, 2015 was Ksh 79.64 per liter. This makes electric pumps run by diesel generators costly to install, operate and maintain especially if they're to be run continuously for a given number of hours a day, to pump enough water for the locals to use and even store for future use.

1.3 SITE ANALYSIS AND INVENTORY

The proposed site for this design project is Nkando village near Nanyuki Town in Laikipia County, Kenya. The site is located 0° 0'4.92"N and 37° 6'22.63"E of the equator and has an elevation of approximately 6522 ft/ 1987m above sea level.

1.4 OVERALL OBJECTIVE

The overall objective is to design a solar-powered piston pumping system as a measure of reducing the time and effort required by a low-scale farmer to access adequate amounts of water for irrigation purposes.

1.4.1 SPECIFIC OBJECTIVES

- i. To review existing data on the climate of the site area as well as the power requirements of existing piston pumps.
- ii. To determine the power requirements of the piston pumping system in order to size and match the appropriate photovoltaic power system.
- iii. To evaluate the cost and quantities of the materials required to construct the solar pumping system.

1.5 STATEMENT OF SCOPE

There are a number of solar-powered pumps available in the market. This project aims to review the existing data on solar-powered piston pumps that are available in the market as well as their water pumping requirements with the aim of selecting the suitable size of pump that will be able to abstract adequate amounts of water, for 7.2 hours a day, from a storm water harvesting pond with a minimum capacity of 1000 m³, to an overhead storage tank which will be required to hold, at least a three-day water supply, determined from the peak irrigation requirement during peak sun hours. The solar panels that are to be used to power the piston pump will be sized and matched according to the power requirements of the pump.

2. LITERATURE REVIEW

Malawi Solar Powered Water Pump System

A solar water pumping project was done by Mercer's University Master's Program for Environmental Engineering in association with Mercer on a Mission, in an orphanage located in the Chuluchosema community of Malawi, Africa (H. King 2010).

This project aimed at pumping water from a nearby well up to a water tower in the orphanage center. The pump was designed to be powered using Solar Panels that capture the solar energy from the sun. The community had a water pump that had ceased to work causing them to manually pump the water that they required several times a day to a tank which was approximately 160 feet away. The total head was estimated to be between 40-50 vertical feet with the frictional losses assumed to be minimal. It was also estimated that the daily water use was between 400-500 liters per day. The solar radiation amount was also estimated to be about $5-6 \text{ kWh/m}^2/\text{day}$.

The students chose to use a solar panel design because of the limited energy resources surrounding the orphanage which made it difficult for the orphanage to access fuel supplies on a daily basis. The tree cover surrounding the area also made the possibility of using wind turbines to produce sustainable wind power to be eliminated. The System was broken down to four parts: the pump, the solar panel, the switches and controller and the water piping. The system in this case was, however, built and tested at Mercer University before being disassembled and shipped to Malawi where it would be reassembled by the team of students for permanent installation.

The pump that was selected was an 11ft² Grundfos Submersible Pump (positive displacement helical pump) capable of providing a maximum of 11 gallons of water per minute. It was to be powered by 2-180W Trina Solar Panels in order to obtain the maximum flowrate at the minimum voltage requirement of the pump. The panels were positioned on the roof of an adjacent building

for full exposure to the sun. The panels, attached in series, were also to be tinted at an angle between 15° and 45° to the sun.

The controller used to monitor the power delivered to the pump as well as to switch the pump on and off was the CU 200 Grundfos controller. It was designed to automatically alarm the residents if an electrical overload occurred as well as monitor the water level in the storage tank (also notified the residents if/when the pump was not working). A float switch was also incorporated which communicated with the controller whenever the pump needed to be switched off or on depending on the tank capacity. The electrical wiring used in the system was also described.

The pipe, through which water was to be transported from the well to the storage tank, that was selected was a black Polyethylene Pipe with a diameter of 1.25 inches. The cost analysis was then done of the entire system and the results listed in the table below:

Part	Quantity	Price (each, \$)	Total (\$)
11 sqf ² Grundfos pump	1	1699	1699
180W Trina solar panel	2	450	900
CU 200 controller	1	320	320
Float switch	1	28.50	28.50
Black polyethylene pipe	2	100	200
(1.25 in)			
AWG #12wire @ 25 in	1	20	20
AWG 10 wire @ 100 in	2	100	200
		Total:	\$3367.5

Challenges faced:

- > Delivery of all the parts and materials to the remote project site.
- Difficulty in obtaining extra materials at the remote location in the event that a mistake/miscalculation was made.
- The site characteristics had to be as close to the measurements of the orphanage to accurately determine how the pump and the solar panels would perform at the permanent location.
- Training for the local people on how to operate the pump once the Mercer on Mission group left.

3. THEORETICAL FRAMEWORK

Classification of pumps

Pumps are classified based on:

- The method of transmitting power to the fluid
- The mechanical principle behind the energy transfer
- The mechanical device for moving the fluid

However, the two major classes of pumps are:

- Kinetic (dynamic or rotodynamic) and,
- **Positive displacement** (reciprocating).

Roto-dynamic/centrifugal pumps consist of an impeller rotated within a pressure casing by a shaft which produces energy that is then transferred to the fluid by the blades of the impeller. The casing surrounding the rotor (rotating blades) forms an internal passageway through which the fluid flows. They produce head and flow by increasing the velocity of the liquid through the machine with the help of the rotating vane impeller. They're of different types, including but not limited to:

- Regenerative pumps
- Axial flow pumps
- End suction pumps
- Double suction pumps
- Self-priming pumps

Positive displacement types of pumps operate by alternately filling a cavity and then displacing a given volume of liquid. It delivers a constant volume of liquid for each cycle against a varying discharge pressure/head. The various types of positive displacement pumps include:

- Reciprocating
- Power
- Steam
- Rotary pumps gear, lobe, screw, vane, regenerative (peripheral) and progressive cavity

A simple piston pump is a type of reciprocating pump. It consists of a piston, two valves, a suction pipe and a delivery pipe. It has two valves; an upper valve called the piston valve found at the piston, and a lower one called the foot valve. The operating principle is that in the downward stroke, the piston valve is opened and the water passes through it while the piston moves downwards. During this stroke, the foot valve remains closed. In the upward stroke, the piston valve is lifted above the piston. In the meantime, the volume under the piston is being depleted with water passing through the opened foot valve. This results in a pulsating water flow.

The some common pumps used in remote areas include hand pumps, electric pumps with diesel or gas generator and solar pumps. Their merits are demerits have been listed below:

TYPE OF	ADVANTAGES	DISADVANTAGES
PUMP		
Gravity	• Very low cost and	• It's practical in only a few
	maintenance (has no fuel	places.
	costs or spills)	
	• Easy to install	
	• Simple and reliable	
Hand pumps	Can be manufactured	Leads to loss of human
	locally	productivity ie laborious and
	• Easy to maintain	tedious
	• Low capital cost	• Has low delivery rates
	• No fuel cost	
Diesel and/or	• Quick and easy to install	• Fuel supplies are erratic and
gasoline pumps	• More widely used	expensive
	• Can be portable	• High maintenance costs
	Low capital costs	• Have short life expectancies
		• Generate noise and fume
		pollution

Solar pumps	• Can operate without	• High capital (initial) costs
	needing attendance	• Water storage is required for
	• Simple and reliable	cloudy periods
	• Has no fuel cost	• Repairs often require skilled
	• Requires low maintenance	technicians
	• Easy to install	
	• Has a long life expectancy	

The Photovoltaic System

A photovoltaic system or solar power system is a renewable energy system which uses photovoltaic modules to convert sunlight into electricity which can then be stored, used directly, fed back into the grid line or combined with one or more other electricity generators and/or more renewable energy sources.

The principle behind the operation of solar power systems is the photoelectric effect. The photoelectric effect occurs when incoming photons interact with a conductive surface such as a silicon cell or a metal film resulting in the dislodging and liberation of the electrons within the material. The electrons then move about the material producing a direct electric current.

Solar power systems are a very reliable and clean source of electricity that can suit a wide range of applications such as residences, industries, agriculture etc.

The major components of a solar power system are:

- Photovoltaic modules which convert sunlight into DC electricity.
- Solar charge controller which acts as a regulator for the voltage and current coming from the photovoltaic panels going to the battery thereby ensuring that the battery doesn't get overcharged and consequently, prolonging its life.
- Inverter that converts DC output from the Photovoltaic panels into a clean AC current for AC appliances or to be fed back into the grid line.

- The battery which stores energy for supplying power to electrical appliances when there is a demand.
- The load that comprises all the electrical appliances that are connected to the solar power system such as lights, radio, TVs, computers, refrigerators, electric pumps etc.

The solar powered pumping system

A solar-powered pump is a pump running on electricity generated by a solar powering system. The solar-powered pumping system consists of the following components:

A. Photovoltaic array

A photovoltaic cell is made up of a semi-conducting material that can convert sunlight directly into electricity. When sunlight strikes the cells electrons are dislodged and liberated and therefore they are free to move within the material resulting in the production of direct current (DC). PV cells are combined to make up a module encased in glass or clear plastic. The modules are in turn aggregated to make a PV array. The types of PV cells available are mono-crystalline, multi-crystalline and amorphous.

- Mono-crystalline cells are made with silicon wafers cut from a single cylindrical crystal of silicon. They're the most efficient with approximately 15% efficiency (fraction of sunlight converted to electrical power). They're also most expensive to produce.
- Multi-crystalline/polycrystalline cells are made by casting molten silicon into blocks which crystallize into a solid block of inter-grown crystals. They're less expensive to produce than mono-crystalline ones because of the simpler manufacturing process and lower purity requirements for the starting material. They're however, less efficient with average efficiency of about 12%.
- Amorphous cells are made from a thin layer of non-crystalline silicon placed on a rigid or flexible substrate. They're relatively easy to manufacture making them less expensive than mono and poly-crystalline cells. However, they're efficiencies are less (about 6%). Due to their low costs, they're the best choice where high efficiency and space are not important.

B. Pump and charge controllers

A pump controller is an electronic linear current booster that acts as an interface between the PV array and the water pump. It provides optimum power to the pump despite wide variations in energy production from the sun. A charge controller is installed when batteries (charged by the solar array) are used in the system. Its purpose is to keep the batteries from overcharging or becoming completely discharged.

C. Passive trackers

These are trackers that don't require any energy input. Their source of energy is the heat from the sun which causes Freon or a substitute refrigerant to move between cylinders in the tracker assembly which in turn causes the panels to shift and maintain a constant 90° angle ^{to} the sun throughout the day (Sinton C.2010) Their purpose is to ensure that the solar panels continuously face the incoming sunlight. They do this by rotating the PV panel about its axis and sometimes by controlling the panel tilt angle to keep the panels facing the sunlight throughout the year. The advantages of using theses trackers include:

- Increased energy production by up to 50% during some months
- Can reduce the number of PV panels required
- Can cause a reduction in pump stalling due to low light conditions during early mornings and late afternoons when the sun angles are low.

D. Electric-powered pump

Electric- powered pumps are driven by an electric motor which can either be AC or DC. Solar water pumps are designed to use direct current which is provided by the PV array. The most efficient type of DC motor is the permanent magnet motor because DC motors that have carbon brushes may require frequent replacement of the brushes due to wearing out. However, brushless designs of DC motors exist which use electrical circuits instead of commentators and brushes and have a higher efficiency than the brushed motor (Sinton C, 2010) Conventional AC pumps use a centrifugal impeller. Where an AC pump is used, an inverter is required to convert the direct current from the PV panels to alternating current and then a battery to store the current. The disadvantages of the AC pumps are:

- When an inverter is used to convert the DC from the PV panels to AC electrical losses are experienced leading to less total energy being utilized.
- An AC pump would require a battery to also be included in the system which makes the system more costly to maintain.
- When operating at low power, the amount of water pumped by these centrifugal pumps drops dramatically thus making them a bit limited in solar applications.

Positive displacement pumps on the other hand, generally pump more slowly than other types of pumps but have good performance under low power conditions and can achieve a high lift.

E. Storage tank

Solar water pumping systems require some storage system to store water rather than store electricity in batteries. This reduces the cost and complexity of the system. As a general rule, the tank size is selected so as to hold at least three day amount of water (Sinton C.2010). A food-grade plastic placed at a high point for gravity feed to different fields may be used.

F. Supply pipes

The supply pipes include that piping from the water source to the pump and from the pump itself to the storage tank. The pipes most commonly used are of circular cross-section. The assumptions made when calculating the pipe parameters are that the fluid will completely fill the cross-section and that there is no free surface of fluid. The losses in the pipes will vary depending on the length, diameter and type of material used to make the pipe.

Fig 1: A typical solar-powered pumping system

Pump sizing and selection

Pump performance depends variedly on how much water the pump is moving and the pressure it is creating. Pump characteristics allow you to control the operation of the pump. The primary relationship worth noting is the fact that, as the flow increases, the fluid pressure decreases.

a) Flow rate of the liquid required to be pumped is determined by the amount of water needed ie the demand obtained by

 $Q = \frac{\text{daily water needs of the operation}}{\text{number of peak sun hours per day}} \dots (\text{eqn 1})$

where; Q is the daily water demand (liters/hour)

b) Total differential head (TDH) is determined by the flowrate required and the system itself. It has two components, the static head across the pump (H_{st}) and the total head loss (H_L) . It's given by:

 $TDH = H_{st} + H_L....(eqn 2)$

c) Static head difference which is the difference between the discharge static head and the suction static head ie

Static head difference = discharge static head – suction static head where

- Discharge static head = Discharge vessel gas pressure head + elevation of discharge pipe outlet – elevation of pump center line
- Suction static head = Suction vessel gas pressure head + elevation of suction vessel liquid surface elevation of pump center line
- d) Total head loss

The total energy losses in the entire pipeline system includes friction losses, H_f , and minor losses, H_m , from bends, valves, meters, exit and entrance losses. The friction losses are determined by: pipe (inside) diameter, length of the pipe, the flow rate and the pipe's roughness.

The head lost due to friction within the pipes can be determined using the Hazen-Williams flow resistance formula for steady uniform flow;

The Hazen-Williams equation:

It was developed for water flow in larger pipes (diameters > 5cm) within a moderate range of water velocity (V < 3m/s)

Where Q is the flow rate, d_h is the hydraulic diameter, R is the hydraulic radius.

velocity of flow $v = 0.85 C R^{0.63} S^{0.54}$(eqn 3)

head loss,
$$h_L = \left(\frac{\vartheta L^2}{c(\frac{D}{4})^{0.63}}\right)^{1.85}$$
....(eqn 4)

Hazen-williams coefficient, C, which depends on surface roughness, is determined using Reynold's number

For total loss to be determined, the following parameters need to be known:

- Length of the pipes
- Diameters of the pipes
- Number and types of fittings (valves, bends etc)
- e) The actual head gained by the fluid (generated by the pump), *H*_P, Can be determined using Bernoulli's equation as follows:

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + H_{L(pump)} - H_p....(eqn 5)$$

where $H_{L(pump)}$ is the head that is lost during the pumping operation.

$$H_p = \frac{P_2}{\rho g} - \frac{P_1}{\rho g} + \frac{V_2^2}{2g} - \frac{V_1^2}{2g} + Z_2 - Z_1 + H_{L(pump)} \dots (eqn 6)$$

where $Z_2 - Z_1$ is the difference in water levels between the pump sump and the header tank

f) The Net Positive Suction Head

This is the energy available at the pump eye to push or force the fluid while it still remains in liquid from. It is the difference between the absolute pressure at the pump suction and the vapor pressure of the pumped liquid at the pumping temperature. For the fluid to remain liquid while being pumped, the pressure at the suction should be greater than the fluid's vapor pressure. This helps prevent 'cavitation' (the existence of vapour bubbles within the fluid in the pump). 'Cavitation' could lead to loss of pump efficiency and significant pump damage.

The factors influencing it are:

• The absolute pressure on the fluid exerted by an outside source such as the atmosphere, H_a

- The static suction pressure which is the head of the fluid above or below the pump suction, H_s
- The vapor pressure of the fluid at that particular temperature, H_{vpa} ; it defines the point which the liquid becomes vapor (the pressure at which a liquid and its vapor exist in equilibrium)
- The friction losses in the suction pipe, H_f
- The velocity head at the pump suction port, H_v , which is usually very small and thus can be ignored.

The NPSH_A (available net positive suction head) should be greater than the NPSH_R (required net positive suction head – the minimum pressure required at the suction port of the pump to keep the pump from cavitating) for the particular pump for correct pump operation. It is given by:

 $NPSH_A = absolute \ pressure \ head \ at \ pump \ suction - liquid \ vapor \ pressure \ head$

 $= H_a - H_{vpa}$(eqn 7)

g) The theoretical power gained by the fluid, P_p , is given by:

 $P_p = \rho g Q H_p \dots (\text{eqn 8})$

This value differs from the actual power consumed by the motor driving the pump due to mechanical losses in the bearings and seals, leakages and/or fluid friction.

The static head, H_{st} , which is the difference in water levels in the pond/pump sump and

header tank together with H_L are system characteristics forming the equation:

 $H_S = H_L + H_{st} = KQ^2 + H_s \qquad (eqn 9)$

This is the equation that manufacturers use to generate the pump system curve as well as the pump curve from the equation:

 $H_p = K'Q^2....(\text{eqn 10})$

The actual pump power, $P_{p(actual)}$, is given as:

 $= \frac{flow rate \times differential head \times liquid density \times gravitational acceleration}{pump efficiency}$

 $=\frac{QH_p\rho g}{\eta_{pump}}....(eqn \ 11)$

Pump efficiency is usually given by the manufacturer but can also be given by:

 $\frac{actual pump power}{input power at pump shaft} = \frac{QH_p \rho g}{power consumed by the motor}....(eqn 12)$

Photovoltaic array sizing:

1) The total power and energy consumption of all the loads that need to be supplied by the solar power system is given as:

Minimum power required = peak pump power requirement × factor catering for losses......(eqn 13)

2) The size of the PV modules is determined by (Morales, T., & Busch, J. 2010).

_	minimum power required	(ear	
_	peak power output of the array		14)

The solar charge controller is rated against Ampereage and Voltage capacities. It is selected to match the voltage of the PV array and batteries. The size collection is based on the short circuit current of the PV array

Solar charge controller rating = Total short circuit current of PV array × 1.3.....(eqn 15)

4) METHODOLOGY

- Preliminary desk study which involved a review of existing information on piston water pumps.
- 2) Collection of primary and secondary data on:
 - Climate data especially the amount of solar insolation experienced at the site location through world weather websites and/or locally from the Kenya Meteorological Department. The evaluation done yielded data on the daily and seasonal variations of the solar insolation at the site.
 - The site coordinates and elevations using a GPS which aided in selecting the possible sites for the various components of the piston pumping system.
- 3) Calculation of the daily water requirements using CROPWAT 8.0

CROPWAT 8.0 is a computer program used to calculate crop water requirements and irrigation requirements based on the soil, climate and crop data of choice. The program also enables one to develop an irrigation schedule for different management conditions as well as the calculation of scheme water supply for varying crop patterns. The calculations are done based on FAO (Food and Agriculture Organization) publications of irrigation and drainage series namely, No 56 "Crop Evapotranspiration- Guidelines for computing crop water requirements" and No 33 titled "Yield response to water". (FAO, 2013)

- 4) Design and selection of the storage tank
- The tank will be sized to store at least a three-day water supply during peak energy production to meet the water needs during cloudy weather or maintenance issues with the power system.
- > The tank material will be selected on the basis of UV resistance to maximize its lifespan.
- 5) Pump sizing and selection
- > The first step will be an examination of the existing solar pumps in the market.
- Thereafter, the design flow rate for the pump will be calculated by dividing the daily water needs of the operation and the peak sun hours experienced at the project location.

- The sum of the vertical lift, pressure head and friction losses (piping and fittings between the point of intake and the storage tank) will be calculated to yield the TDH using the appropriate formulas.
- Using the pump performance curves (such as the one in appendix 4), the peak power requirements for the pump can be obtained for the calculated flow rate and TDH.
- 6) PV panel sizing and matching
- From the peak power requirements, the solar panels or array of panels required to supply this power can be sized.
- The connection of the panels (series, parallel or a combination of both) can then be determined to meet the voltage and ampereage requirements of the pump.
- The total power produced by the array can then be obtained by summing up the individual power outputs of each panel.
- The support structure for the panels will also be designed although it is usually provided for by the supplier.
- 7) Material cost analysis

The entire system will be analyzed based on the quantities and cost of the materials required to design all the components.

A flowchart demonstrating the concept design process.

5. RESULTS

MONTH	RAINFALL	MIN	MAX	RELATIVE	SUNSHINE	WIND
	(mm)	TEMP	ТЕМР	HUMIDITY	HOURS	SPEED
		(°C)	(°C)	(%)		(m/sec)
JAN	29.4	9.5	25.9	55	8.5	3.9
FEB	14.2	9.6	27.3	48	9.7	4.1
MAR	47.9	10.8	27.2	55	6.4	3.9
APR	114.7	11.6	25.6	68	7.3	3.8
MAY	75.9	11.6	24.7	68	6.5	4.4
JUN	43.7	10.5	21.8	65	8.6	3.9
JUL	59.9	10.2	23.9	65	8.3	4.2
AUG	70.5	10.4	24.4	64	8.6	4.3
SEP	52.6	10.1	25.5	60	8.2	3.8
ОСТ	77.6	11.0	24.8	65	6.6	3.3
NOV	80.6	11.4	23.5	70	6.4	3.0
DEC	40.0	10.1	24.6	62	7.2	3.4

A review of the existing solar pumps available in the market was done (refer to the catalogue on appendix 4)

PUMP SIZING AND SELECTION:

A. Daily water requirements

Using CROPWAT 8.0 the net irrigation water requirements for the driest months of the year, selected on analysis of the climatic data, were designed as follows:

Сгор	Gross	Planting date	Length of	Harvest date	Area to be
	irrigation		crop season		irrigated
	requirement		(days)		
	(mm)				
Tomato	537.4	01/11	145	25/03	$\approx 0.0625 acres$
Potato	488.8	01/11	130	10/03	$\approx 0.0625 acres$
Maize	380.5	01/11	125	05/03	$\approx 0.125 acres$

Table 2: net scheme irrigation requirement for the scheme

Irrigation months:	Net scheme	
scheme	irrigation	
	requirement	
	(mm/day)	
January	4.0	
February	1.4	
October	0.1	
November	1.3	
December	4.0	

Table 3: projected pumping flowrates

Months	Flowrate (m ³ /hr)	Flowrate (m ³ /min)	Flowrate (L/min)
January	0.4761	0.007935	7.935
February	0.1460	0.002434	2.434
October	0.01536	0.000256	0.256
November	0.2055	0.003425	3.425
December	0.5621	0.009368	9.368
Worst case scenario	0.562	0.009368	9.368

B. Total Differential Head

Overhead storage tank will have a minimum capacity of $\frac{4.0}{1000}m \times 1011.714m^2 \times 3days = 12.141m^3 = 12141L$

Tank selected = plastic cylindrical roto tank with a capacity of 16000L (312 cm high and diameter of 240 cm)

• Static head difference

The vertical linear distance between the water level and delivery outlet = 10m - 6m = 4m

• Head loss

The pipe material that was selected was PVC pipes which have considerably low friction losses, making them a suitable choice for long pipes because lower friction losses leads to a reduced pump size and subsequent energy consumption. (Davis & Shirtliff, 2014 product manual, page 291)

Using Hazen-Williams equation, (equation 4) head loss, assuming the suction side of the pump will use a bigger pipe diameter (pipe length =6m), generated is tabulated below:

D (m)	$\vartheta\left(\frac{m}{sec}\right)$	$H_L(\mathbf{m})$
0.025	0.048	3.72985241
0.032	0.030	1.12217745
0.04	0.019	0.37891855
0.05	0.012	0.12794703
0.063	0.008	0.04156017
0.075	0.005	0.01779337
0.09	0.004	0.00732828
0.11	0.002	0.00276040

Table 4: head loss for different pipe diameters, length = 6m, $Q = 0.5621 \text{m}^3/hr$

0.16	0.001	0.00044589
0.2	0.001	0.00015056

Assuming also that the rest of the pipe, will have the same diameter (length =10m) the head loss generated is tabulated below:

D (m)	$\vartheta\left(\frac{m}{sec}\right)$	$H_L(\mathbf{m})$
0.025	0.049	24.6906214
0.032	0.030	7.4285134
0.04	0.019	2.5083391
0.05	0.012	0.8469750
0.063	0.008	0.2751172
0.075	0.005	0.1177873
0.09	0.004	0.0485112
0.11	0.003	0.0182731
0.16	0.001	0.0029516
0.2	0.001	0.0009967

Table 5: Head loss for different pipe diameters, length = 10m, $Q=0.5621m^3/hr$

• Pressure head

For this case, the pressure head was assumed to be negligible since the delivery point is a tank and pressure delivery is not necessary.

• Pipe size selection

The pipe diameter that was selected was 50mm/0.050m for the suction pipe and 40mm/0.040m for the rest of the pipe. The smaller diameters were selected because for long pipes, the piping cost can be considerably more expensive than the pumping installation and a pipe size smaller matched to a larger sized pump can reduce the investment cost (Davis & Shirtliff 2014 product manual page 289) but increases the running cost.

$$TDH = H_S + H_L = 4m + 2.51m + 0.128m = 6.638m$$

• NPSH

Using equation 7 the available net positive suction head was calculated as follows:

 $H_{\nu\nu a}$ of water was taken as 0.03 atmospheres at 25°C

(www.chem.purdue.edu/gchelp/liquids/vpress.html)

$$H_a - H_{vpa} = \frac{101326}{1000 \times 9.81} m - \frac{3039.75}{1000 \times 9.81}$$

Available net positive suction head = 13.67m

• Pump selection

Available net positive suction head = 13.67mTotal differential head = 6.638mPumping flowrate, $Q=0.5621m^3/hr = 9.368L/min =$

The piston pumps selected that closely met the above needs were:

	Grundfos	Shurflo	SPB 2.5-	Apollo model	SFPP model
	BMP 1.0	2088 12V	23C	102	3020, 12PV
Max flow	10L/min	13.333L/min	11.356L/min	10.2 L/min	17.8L/min
				(max)	
Voltage	3×380-415V,	12V DC	45-90V DC	24V DC	12,24,48 OR
	50Hz	power input			90V DC
Energy	4.0kW	7-120W	700W max		314W
rating					
Head (m)		10-35	15-30		6.7056
Power			0.75 HP	0.25HP	

The pump model that was selected was the (SFPP) Surface Force Piston Pump model 3020, 12V

• Pump power

Pump power = flow rate x total differential head x liquid density x acceleration due to gravity \div pump efficiency

Assuming a pump efficiency of 70%

$$Theoretical P_{pump} = \frac{0.000156 \times 6.638 \times 1000 \times 9.81}{0.7} = 14.5W$$

Actual pump power required = 314 W

• PV module sizing and selection

- > Minimum power needed to operate the pump = $314W \times 1.2 = 376.8W$
- > No. PV panels = $\frac{376.8}{125}$ = 4 panels (which is the most ideal choice)
- The panel model that was selected was YL125 with a rated power of `125 W and open circuit voltage of 22V and total short circuit current of 7.89A
- ➤ The solar charge controller selection

Solar charge controller rating

= Total short circuit current of PV array \times 1.3

 $= 7.89 \times 1.3 = 10.257A$

The appropriate charge controllers would be the SUNDAYA Apple 15 and/or OPTI SC 15A

The charge controller that was selected was the SUNDAYA Apple 15 charge controller.

• Cost estimates

Item	Quantity	Cost
PVC pipe D40 @ Shs 48	10 meters	Shs 480
PVC pipe D50 @ Shs 58 per	6 meters	Shs 348
meter		
20,000 L tank	1	Shs 20000
YL-125 solar panel @ sh	4	Sh 57600
14400 each (VAT excluded)		
SUNDAYA APPLE 15A	1	Sh 5200
charge controller @ sh 5200		
(VAT excluded)		
Surface Force Piston Pump	1	Sh 239400
model 3020, 12V		
	TOTAL	= shs 323028

5) DISCUSSION

The data analysis done yielded the following results:

- An irrigation water requirement of 4.0 mm/day in the month of December which was the highest requirement calculated for an irrigation period between the months of October-February.
- This daily irrigation requirement was thereafter used to compute the pumping flowrate of 10.07L/min/ 0.60429m³/hr
- Total Differential head of 6.638m
- NPSH_A of 13.67m
- Cost of the entire system was found to be shs 308628

There were some assumptions that were made such as:

- That the farmer's cropping season would be from October to February which are typically the driest months of the year in the area.
- That the suction pipe will have a larger diameter than the delivery pipe because of the low head and pressure requirements on the suction side of the pipe compared to the delivery pipe.
- That the crops to be irrigated by the farmer are tomatoes (25% of the irrigation land), potatoes (25% of the irrigation land) and maize (50% irrigation land)

The selection of the solar powering system was based on the fact that a solar powering system is an environmentally friendly source of alternative energy. An electric wind pump, another type of alternative energy water abstraction method, would have been a credible solution but the presence of tall trees in the site farm, which generally act as wind barriers, as well as the fact that a long-lasting farm wind pump, manufactured from steel components and drive piston rods are quite expensive in relation to their power output (FAO,).Other than this, for the wind pump to become economically attractive technology requires that the site have a mean wind speed of 5m/s.

A manually operated hand pump, although a cheap and clean abstraction method, on the other hand, requires time and effort to operate. For example, a rope and washer pump can provide

1L/sec from a 5m depth when pumped by a child if pumped for 20 hours a week (enough to irrigate a quarter acre) while an adult can pump 20L/min from a depth of 20m. this time and effort can be reduced by installing the solar pump which doesn't need to be manned while it operates.

6) CONCLUSION AND RECOMMENDATIONS

The objectives of the design project were met. The review of existing climatic data on the site as well the pumping requirements of the available solar pumps in the market revealed that solar power as an alternative source of energy, is a viable solution for the water abstraction problems experienced by the local farmers in Nkando village.

The solution offered was that of a SFPP 3020, 12PV pump powered by 4 YL-125 solar panels each with a power rating of 125W operating for 7.2 hours a day and fitted with a 15A Sundaya charge controller. The overhead tank which will be fitted 5m above the ground level will have a storage capacity of 16000L.

My recommendations are that the water from the overhead tank can be supplied by gravity feed to the farms to reduce the entire cost of supplying irrigation water.

9) **REFERENCES**

Bengtson, H. (2011, May 20). Uniform Open Channel Water Flow Rate Calculation with the Manning Equation (L. Stonecypher, Ed.). Retrieved January 21, 2015, from http://www.brighthubengineering.com/hydraulics-civil-engineering/52905-manning-equation-for-uniform-open-channel-flow-calculations/

Food and Agriculture Organization (2013) CROPWAT 8.0. Retrieved from www.fao.org/nr/water/infore_databases_cropwat.html

Engineering toolbox. Hazen-Williams Equation - calculating Friction Head Loss in Water Pipes (Hazen-Williams Equation - calculating Friction Head Loss in Water Pipes) http://www.engineeringtoolbox.com/hazen-williams-water-d_797.html

How To Size A Pump | Blackmonk Engineering. (2009, November 11). Retrieved February 22, 2015, from http://blackmonk.co.uk/2009/11/11/how-to-size-a-pump/

Kamadi, G. (2012, January 23). Solar pump project aims to ease Kenyan water shortages (cb1f21c7-7d98-4ea3-903f-c5de10e41700). Retrieved February 12, 2015, from http://www.trust.org/item/?map=solar-pump-project-aims-to-ease-kenyan-water-shortages

King, H. & Butler A. (2010, January 1). Malawi Solar Powered Water Pump System.

Retrieved April 26, 2015, from

http://se.asee.org/proceedings/ASEE2011/Papers/FP2011kin150_163.PDF

Kudela, H. (n.d.). Hydraulic losses in pipes. Retrieved January 19, 2015, from http://fluid.itcmp.pwr.wroc.pl/~znmp/dydaktyka/fundam_FM/Lecture11_12.pdf

Maupoux, M. (Ed.). (2010). Solar (Photovoltaic) Water Pumping. Retrieved February 22, 2015, from http://www.mtnforum.org/sites/default/files/publication/files/3816.pdf

McFarland, M. (2001, January 1). Hazen-Williams Equation - calculating Friction Head Loss in Water Pipes. Retrieved March 12, 2015, from http://www.engineeringtoolbox.com/hazenwilliams-water-d_797.html Merkley & Allen (n.d. lecture 11, page 123). Sprinkle and Trickle Irrigation Lectures. Retrieved March 4, 2015, from http://ocw.usu.edu/Biological_and_Irrigation_Engineering/Sprinkle___Trickle_Irrigation/61 10__L11_Pumps_and_System_Curves.pdf

Morales, T., & Busch, J. (2010, October 1). Design of Small Photovoltaic (PV) Solar-Powered Water Pump Systems (E. McDuff, Ed.). Retrieved February 24, 2015, from http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_046471.pdf = nrcs142p2_046471.pdf

Ngalame, E. (2015, March 24). Solar water system douses risks in Cameroon's arid north:

TRFN. Retrieved April 28, 2015, from

http://af.reuters.com/article/topNews/idAFKBN0MK0K920150324?sp=true

Pumps, Pipes and Storage Resources for Drinking-water Assistance Programme. (2010,

December 1). Retrieved April 28, 2015, from

https://www.health.govt.nz/system/files/documents/publications/pumps-pipes-and-

storage2010_0.pdf

Romanyshyn, G. (2010, September 26). Part II: Optimizing Pumping Systems. Retrieved February 22, 2015, from http://www.flowcontrolnetwork.com/articles/part-ii-optimizing-pumping-systems

Sinton, C., Butler, R., & Winnett, R. (2010). Guide To Solar-Powered Water Pumping Systems in New York State. Retrieved February 24, 2015, from http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8& ved=0CB0QFjAA&url=http://www.nyserda.ny.gov/-/media/Files/EERP/Renewables/Guidesolar-powered-pumping-systemsNYS.pdf&ei=nCDsVL21PMjmUpe2gfAG&usg=AFQjCNGHdlX7fNVYHjKurGJnW4_3YaJpA&sig2=SmULLL150n2F_JxAi_pcxg&bvm=bv.86475890,d.d24

Summary (Pump Power Calculation – Neutrium)(2012, July 9) https://neutrium.net/equipment/pump-power-calculation/

Task 9:-Case Study: Drinking Water Supply with Photovoltaic Water Pumps (PVP). (2002,

September). Retrieved March 28, 2015, from

http://www.martinot.info/GTZ_drinking_PVPS.pdf

Understanding Net Positive Suction Head. (2007, January 1). Retrieved March 4, 2015, from http://www.pumpschool.com/applications/NPSH.pdf

Wilson, S. (n.d.). Retrieved February 22, 2015, from https://www.grundfos.com/content/dam/CBS/global/whitepapers/Net-Positive-Suction-Head-NPSH.pdf

10. APPENDICES APPENDIX 1: IMAGES OF THE SITE

Runoff water flowing beside the farm: the pond will be supplied with Rainwater and runoff water

APPENDIX 2: MAP OF THE FARM

Pond location and storage tank location

APPENDIX 3: CATALOGUE OF EXISTING SOLAR PUMPS

Grundfos Novalobe 30/.33	9.0kW	14.4	4.5	<i></i>		viscous fluids		electric booster	65	1
SOLAR BUMPS										
Caudior CRE 3.9	8001//	5.0	1.0	4.5	70	clean cold unior		polar onwar	202	
Churdles CRE 5.5	80014	10.0	2.0	4.5	10	clean cold water		solar power	202	
Caudios CRE 10-2	1000W	16.0	6.0	4.5	24	clean cold water		solar power	202	
Grundics SOE 0.6-2	80-35014	0.6	0.0	10	120	clean cold water		solar power	202	
Caudios SOF 1.2-2	100-650W	1.2	0.3	10	120	clean cold water		solar power	200	
Grundios SOF 1.2-3	200-1200W	12	0.4	90	250	clean cold water		solar power	200	
Grundles SOF 2.5-2	200-1300W	26	1.0	5	120	clean cold water		solar nower	200	
Grundfes SOF 3A-10	200-1300W	3.0	10	30	70	clean cold water		solar power	200	
Grundles SOE 5A-3	100-650W	7.5	2.0	2	15	clean cold water		solar power	200	
Grundtos SOF 5A-7	200-1300W	7.5	2.5	10	50	clean cold water		solar power	200	
Grundtos SOF 8A-3	150-1100W	13.0	5.0	2	15	clean cold water		solar power	200	
Grundtos SQF 8A-5	200-1300W	14.0	5.0	2	30	clean cold water		solar power	200	
Grundles SQF 11A-3	150-1300W	17.0	7.0	2	15	clean cold water		solar power	200	
Lorentz PS1800 HR-05L	200-900W	0.9	0.4	50	250	clean cold water		solar power	206	
Lorentz PS600HR-07	100-450W	1.2	0.4	30	90	clean cold water		solar power	206	
Lorentz PS1200 HR-14	140-700W	1.2	2.4	10	60	clean cold water		solar power	206	
Lorentz PS1800 CSJ1-25	400-1400W	2.5	1.0	70	100	clean cold water		solar power	206	
Lorentz PS150 CSJ5-8	50-250W	3.5	1.0	5	20	clean cold water		solar power	206	
Lorentz PS4000 CSJ5-25	500-3000W	6.0	2.0	60	140	clean cold water		solar power	206	
Lorentz PS1800CSJ5-12	250-1400W	7.0	1.0	20	70	clean cold water		solar power	206	
Lorentx PS4000 CSJ8-15	400-2800W	13.0	3.0	30	80	clean cold water		solar power	206	
Shurflo 8000 12V	40-90W	0.4	0.3	10	45	clean cold water		solar power	204	
Shurflo 8030 12V	60-150W	0.4	0.3	10	100	clean cold water		solar power	204	
Shurtlo 9325 24V	60-160W	0.4	0.3	10	70	clean cold water		solar power	204	
Shurllo 2088 12V	70-120W	0.8	0.4	10	35	clean cold water		solar power	204	
CIRCULATOR PUMPS										
Grundfos UPA 15-90	0.12kW	1.5	0.5	2.5	8	clean cold water	clean hot water	electric circulator	61	
Grundlos UPA 120	0.25kW	2.5	0.5	7.5	12.5	clean cold water	clean hot water	electric circulator	61	
Grundfos UPS 25/60	0.1kW	3.0	0.5	1	4	clean hot water		electric circulator	62	
Pedrollo DHL 25-65	0.1kW	3.0	0.5	1	5	clean hot water		electric circulator	90	
Pedrollo DHL 32-70	0.14kW	5.5	1.0	1	6	clean hot water		electric circulator	90	
Grundlos UPS 32/80	0.25kW	8.0	1.0	2	7	clean hot water		electric circulator	62	
Grundfos UPS 40/120	0.5kW	16.0	4.0	3	9	clean hot water		electric circulator	63	
Grundfos LIPS 50/120	0.9kW	25.0	5.0	3	9	clean hot water		electric circulator	63	~

Some of the existing solar pumps in the market (courtesy of Davis & Shirtliff product catalogue)

APPENDIX 4: H-W COEFFICIENTS TABLE SHOWING PIPE ROUGHNESS FOR VARIOUS PIPE MATERIALS

(source: www.engineersedge.com/fluid_flow/hazenmilliams_coefficients_table_1322)

Material	Hazen-Williams C
Aluminium	130-150
Brass	130-140
Cast-iron (new unlined)	130
Ductile iron pipe	140
Fibre glass pipe	150
Plastic	130-150
polyethylene	140
Polyvinyl Chloride (PVC)	140
Metal pipes-very to extremely smooth	130-140

APPENDIX 6: CLIMATE DATA

Sourced from Kenya Meteorological Department

YEAR	JAN	FEB	MARCH	APR	MAY	JUNE	JULY	AUG	SEP	ОСТ	NOV	DEC
1997							7.38	9.09	8.52	5.37	3.33	4.91
1998	5.94	8.97		7.55	6.71	7.96	7.95		8.27	7.25	6.53	8.95
1999	8.78	10.43	6.85	7.8					8.6	7.7	6.6	6.6
2000	10	10.4	0.9	7.7	8.5	9.1			8.1	7.1		
2001			0.76						7.5	6.6		
2002		9.7	7.3	5.9	0.73	7.9	9.2	8.9	8	6.5	7.1	6.3
2003	9.5	9.7	8.5	7.1	5.9	9	8.4	6.5	9.3	7.2		
2005	8.8	10.34	8.52	7.27	6.93	8.54	7.7	8.43	7.78	7.03	6.69	9.2
2007	8.85	8.99	8.41	7.46	7.33				8.51	6.68	6.77	8.15
2008	8.22	9.63	7.35	7.05	7.89	8.39	7.91	8.72	7.57	5.29		
2009	8.21	9.3	8.86	7.93	8.07	9.61	9.51	9.8	8.12	5.67	7.43	6.44
2010	8.28											
	76.58	87.46	57.45	65.76	52.06	60.5	58.05	51.44	90.27	72.39	44.45	50.55
AVERAG E MONTH LY SUNSHI NE	0.5	0.7	6.4	7.2			0.2		0.2			7.2

YEAR	2008	2009	2010	2011	2012	AVERAGE WIND SPEED (Knots)	AVERAGE MONTHLY SPEED (km/day)	AVERAGE MONTHLY SPEED (m/sec)
JAN	7.4	7.4	7.0	8.7	7.0	7.5	334.1	3.9
FEB	8.0	9.7	7.0	7.9	7.6	8.0	357.0	4.1
MAR	6.9	8.2	6.5	8.6	7.9	7.6	338.5	3.9
APR	7.4	7.9	6.6	8.3	6.4	7.3	325.8	3.8
MAY	9.9	7.8	8.2	8.7	7.8	8.5	377.6	4.4
JUN	7.9	9.6	7.7	6.5	6.3	7.6	337.2	3.9
JUL	7.9	10.5	9.1	6.5	6.9	8.2	363.3	4.2
AUG	9.1	9.5	8.3	9.0	6.1	8.4	373.6	4.3
SEP	7.8	8.4	7.7	8.6	4.8	7.5	331.9	3.8
ОСТ	6.1	7.2	7.1	6.1	5.4	6.4	283.0	3.3
NOV	6.0	7.0	6.1	5.2	4.9	5.8	259.6	3.0
DEC	6.4	6.4	7.0	6.1	6.9	6.6	291.6	3.4
							Mean monthly speed =	3.8
							1 knot = 44.448001 km/day	1 knot = 0.514444 m/sec

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1997				12.17	9.24	10.36	10.07	9.22	8.67	13	13.19	12.83
1998	12.88	10.06		11.88	12.02	9.61	9.65		9.21	9.37	10.38	7.1
1999	7.87	7.59	10.7	10.14	10.37	9.56	9.63	9.98	9.21	10.14	10.25	10.31
2000	7.81	8.33	9.87	11.06	11.45	10.78	10.49	10.76	10.16	11.14	11.95	10.71
2001	11.75	9.78	11.16	12.23	11.89	10.16	9.63	10.43	9.24	10.63	12.03	9.71
2002	9.67	9.54	10.93	11.93	11.67	9.7	9.62	10.25	10.07	10.75	11.34	12.16
2003	8.63	9.7	10.47	11.78	12.84	10.56	9.85	10.5	9.68	10.3	11.54	8.89
2005	9.91	9.49	11.07	11.79	12.36	10.92	10.42	10.44	10.96	10.55	10.26	9.12
2007	9.42	10.2	10.1	11.34	11.36	11.34	10.57	10.75	10.68	11.22	11.21	9.2
2008	9.21	9.8	11.03	11.04	10.94	9.73	10.99	10.53	10.35	12.11	11.45	9.14
2009	9.62	10.39	11.21	11.46	11.71	10.36	10.62	10.5	10.5	12.5	11.55	11.84
2010	10.72	12.16	12.58	12.56	12.47	11.4	10.59	11.05	10.07	11.18	10.49	8.62
2011	8.74	9.1		11.14	11.45	10.33	10.02	10.89	10.86	11.38	12.4	9.86
2012	7.2	8.96	9.79	12.23	11.99	10.45	10.16		9.67	10.98		10.87
2013	9.92	9.1	11.09			10.69	10.15	10.1	11.22	10.48	11.41	11.24
2014			11.03		12.11	11.56	10.79	10.83	10.36			
	133.35	134.2	141.03	162.75	173.87	167.51	163.25	146.23	160.91	165.73	159.45	151.6
AVERAGE MIN MONTHLY	0.5	0.6	10.9	11.6	11.6	10 5	10.2	10.4	10.1	11.0	11 /	10.1
	9.5	9.6	10.8	11.6	11.6	10.5	10.2	10.4	10.1	11.0	11.4	10.1

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1997				82.2	77.6	76.4	77.0	75.5	68.2	78.6	85.2	84.4
1998	86.4	76.3		79.4	82.4	78.8	78.0		72.0	71.5	77.0	71.0
1999	67.6	56.2	75.6	76.0	71.8	68.1	72.1	69.9	61.2	66.5	76.3	76.4
2000	59.9	46.9	58.9	69.8	68.9	67.5	72.4	68.7	63.3	66.5	78.5	65.6
2001	73.7	62.8	69.9	79.0	70.4	72.5	76.5	72.8	66.9	69.1	82.7	72.0
2002	66.0	59.1	72.7	82.3	78.7	76.8	70.5	68.5	60.2	70.3	75.9	80.5
2003	64.7	52.5	62.9	74.8	81.1	75.5	75.1	77.3	65.6	71.7	78.9	74.4
2005	64.8	62.2	62.2	71.5	78.9	76.1	72.3	72.4	73.2	69.8	68.4	58.7
2007	70.9	62.8	58.2	76.0	74.6	78.8	78.7	74.8	71.5	74.0	72.1	63.7
2008	64.8	56.5	65.2	75.7	69.2	70.0	73.4	69.3	65.5	76.8	71.4	65.7
2009	60.7	57.1	57.9	67.3	72.4	65.1	65.1	67.3	62.3	71.4	71.4	75.3
2010	66.7	72.4	77.9	78.1	76.5	72.5	73.8	72.7	64.8	68.4	75.6	64.0
2011	58.0	49.1		68.4	73.4	75.8	76.3	76.6	72.8	71.8	80.9	76.0
2012	53.6	55.0	53.2	75.8	76.8	77.6	81.6		70.7	73.7		74.1
2013	66.4	55.4	66.4			77.8	76.6	74.5	69.4	65.0	76.6	75.2
2014			69.0		71.9	71.2	73.8	68.0	66.9			
AVERAGE MONTHLY R.H (%)	66.0	58.9	65.4	75.4	75.0	73.8	74.6	72.0	67.2	71.0	76.5	71.8

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1997				24.43	24.05	23.68	23.1	23.83	26.4	22.93	22.14	22.41
1998	23.48	25.85		26	25.02	24.18	23.63		25.13	25.65	22.99	25.17
1999	26.13	27.46	26.1	25.37	24.61	25.36	23.55	24.93	25.94	25.65	23.62	23.68
2000	26.2	27.57	27.97	26.57	25.8	24.86	24.57	24.55	26.16	25.14	23.6	24.83
2001						24.35	23.81	24.85	26.36	26.04	22.64	24.59
2002	26.01	28.19	27.02	24.74	24.87	24.96	25.38	25.23	26.75			
2003			28.09	26.05	24.47	24.17	24.27	24.01	25.33	25.3	23.4	23.96
2005	27.34	28.51	28.35	26.04	24.22	23.89	22.71	24.62	24.9	24.49	24.71	26.52
2007	25.39	27.02	27.21	25.2	24.3	23.85	22.87	23.34	24.46	24.1	24.19	25.23
2008	26.03	27.09	27.18	24.94	24.66	24.59	23.66	24.55	25.89	23.93	23.5	25.21
2009	25.95	26.94	28.24	26.68	25.48	25.98	24.62	25.25	26.5	24.38	24.32	24.17
2010	24.92	26.61	24.44	24.29	24.39	23.8	23.3	23.85	24.67	25.48	23.53	26.13
2011	26.66	27.96		26.19	24.58	24.8	24.26	23.27	23.88	24.16	23.63	23.81
2012	26.23	27.03	28.08	25.84	24.31	24.06	23.86		25.18	24.75		24.34
2013	26.54	27.83	27.72			24.28	24.21	23.81	25.92	25.58	23.3	24.13
2014			26.57		24.82	24.89	24.17	24.97	25.23			
	310.88	328.06	326.97	332.34	345.58	391.7	381.97	341.06	408.7	347.58	305.57	344.18
AVERAGE MAX												
MONTHLY TEMP	25.9	27.3	27.2	25.6	24.7	21.8	23.9	24.4	25.5	24.8	23.5	24.6

year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
1998												11.6
2000		25.6	23.26	20.21	21.23	21.2	20.67	21.02	22	18.99	17.49	21.54
2001	20.34	24.87	19.47	19.05	20.92	19.46	20.97	21.23	19.51	18.52	15.34	20.43
2002	20.78	24.53	19.54	17.02	20.14	21.04	22.42	20.94	20.84	17.43	19.96	17.84
2003	23.58	23.92	21.83	18.92	19.03	20.22	20.08	18.61	22.67	17.27	16.27	21.1
2005	22.62	25.05	21.32	18.58	17.8	20.74	18.6	20.44	20.55	18.41	18.26	22.17
2007	21.32	21.8	21.07	17.54	17.81	18.1	18.75	19.51	20.08	17.18	17.46	19.69
2008	20.23	22.64	19.56	17.75	19.34	18.78	18.92	19.5	19.72	16.43	17.96	20.55
2009	21.05	21.59	22.24	18.33	18.61	20.89	20.57	21.94	20.14	16.53	19.27	17.13
2010	20.86	18.95	18.3	15.8	19.48	18.94	18.36	18.62	19.29	17.68	15.02	20.15
2011	22.01	23.29		18.19	19.04	19.01	20.26	19.33	19.72	18.16	16.14	20.68
2012	24.56	22.74	23.37	16.77	17.05	18.42	18.95		20.39	17.04		16.77
2013	20.45	22.95	18.82			18.26	19.14	19.29	19.94	18.48	15.25	18.33
2014			20.13		17.63	19.07	19.42	19.72	19.91			
	237.8	277.93	248.91	198.16	228.08	254.13	257.11	240.15	264.76	212.12	188.42	247.98
TOTAL MONTH LY RADIATI ON (Mj/m2/ day)	21.62	23.16	20.74	18.01	19.01	19.55	19.78	20.01	20.37	17.68	17.13	19.08
Avg radiatio n (kwh/m 2)	6.01	6.43	5.76	5.00	5.28	5.43	5.49	5.56	5.66	4.91	4.76	5.30

Month	Net scheme irrigation requirement (mm/day)	Area of land (acre)	Area (m^2)	Daily water needs (mm/day)	Daily water needs (L/day)	No sun hours (hrs/day)	Pump flow rate (I/min)	Pump flow rate (I/sec)	Pump flow rate (m^3/min)	Pump flow rate (m^3/hr)
Jan	4.0	0.25	1011.714	4.0	4046.9	8.5	7.935	0.1322	0.007935	0.4761
Feb	1.4	0.25	1011.714	1.4	1416.4	9.7	2.434	0.0406	0.002434	0.1460
Mar	0	0.25	1011.714	0	0	6.4	0.000	0.0000	0.000	0.0000
Apr	0	0.25	1011.714	0	0	7.3	0.000	0.0000	0.000	0.0000
May	0	0.25	1011.714	0	0	6.5	0.000	0.0000	0.000	0.0000
Jun	0	0.25	1011.714	0	0	8.6	0.000	0.0000	0.000	0.0000
Jul	0	0.25	1011.714	0	0	8.3	0.000	0.0000	0.000	0.0000
Aug	0	0.25	1011.714	0	0	8.6	0.000	0.0000	0.000	0.0000
Sep	0	0.25	1011.714	0	0	8.2	0.000	0.0000	0.000	0.0000
Oct	0.1	0.25	1011.714	0.1	101.2	6.6	0.256	0.0043	0.000256	0.01536
Nov	1.3	0.25	1011.714	1.3	1315.2	6.4	3.425	0.0571	0.003425	0.2055
Dec	4.0	0.25	1011.714	4.0	4046.9	7.2	9.368	0.1561	0.009368	0.5621

 $1 hectare \equiv 2.4710 acres \equiv 10000m^2$

$$\frac{1}{4} of an acre \equiv 1011.714m^2$$

DIAMETER	AREA, A	FLOW RATE,	VELOCITY	PIPE			HEADLOSS
(m)	(m^2)	Q (m^3/sec)	(m/sec)	LENGTH(m)	მ L^2	CR^0.63	(m)
			0.324		11.656		3.72985241
0.025	0.000491	0.000156		6		5.722	
			0.198		7.114		1.12217745
0.032	0.000805	0.000156		6		6.685	
			0.126		4.553		0.37891855
0.04	0.001257	0.000156		6		7.694	
			0.081	_	2.914		0.12794703
0.05	0.001964	0.000156		6		8.855	
			0.051		1.835		0.04156017
0.063	0.003119	0.000156		6		10.243	
0.075	0.004400	0.000456	0.036	c.	1.295	44.400	0.01779337
0.075	0.004420	0.000156		6		11.432	
0.00	0.0000004	0.000456	0.025	C.	0.899	12 022	0.00732828
0.09	0.006364	0.000156		6		12.823	
0.11	0 000507	0.000156	0.017	C	0.602		0.00276040
0.11	0.009507	0.000156		6		14.551	
0.10	0.020111	0.000156	0.008	C	0.285	10.420	0.00044589
0.16	0.020114	0.000156	0.007	6	0.422	18.426	0.00045050
	0.001.400	0.000150	0.005	C C	0.182	24 207	0.00015056
0.2	0.031429	0.000156		6		21.207	

Where $\vartheta = \frac{Q}{A}$

DIAMETER		FLOW RATE	VELOCITY	PIPE			HEADLOSS
(m)	AREA (m^2)	(m^3/sec)	(m/sec)	LENGTH(m)	მ L^2	CR^0.63	(m)
		0.000159	0.324		32.37818182		24.6906214
0.025	0.000491			10		5.722	
		0.000159	0.198		19.76207386		7.4285134
0.032	0.000805			10		6.685	
		0.000159	0.126		12.64772727		2.5083391
0.04	0.001257			10		7.694	
		0.000159	0.081		8.094545455		0.8469750
0.05	0.001964			10		8.855	
		0.000159	0.051		5.098605099		0.2751172
0.063	0.003119			10		10.243	
		0.000159	0.036		3.597575758		0.1177873
0.075	0.004420			10		11.432	
		0.000159	0.025		2.498316498		0.0485112
0.09	0.006364			10		12.823	
		0.000159	0.017		1.672426747		0.0182731
0.11	0.009507			10		14.551	
		0.000159	0.008		0.790482955		0.0029516
0.16	0.020114			10		18.426	
		0.000159	0.005		0.505909091		0.0009967
0.2	0.031429			10		21.207	

APPENDIX 7: DATA ANALYSIS

	Country KEN	IYA				Station	LAIKIPIA AIRB	ASE		
	Altitude 184	16 m .	Li	atitude 0.00	6 °S ▼	L	Longitude 36.86 FE 💌			
	Month	Min Temp	Max Temp	Humidity	Wind	Sun	Rad	ETo		
0		°C	°C	%	km/day	hours	MJ/m²/day	mm/day		
MT Bain	January	9.5	25.9	55	48	8.5	21.9	3.91		
nain	February	9.6	27.3	48	357	9.7	24.5	6.35		
	March	10.8	27.2	55	339	6.4	19.5	5.48		
	April	11.6	25.6	68	326	7.3	20.3	4.69		
Сгор	May	11.6	24.7	68	378	6.5	18.1	4.43		
	June	10.5	21.8	65	337	8.6	20.4	4.25		
	July	10.2	23.9	65	363	8.3	20.2	4.54		
1	August	10.4	24.4	64	374	8.6	21.7	4.90		
Soil	September	10.1	25.5	60	332	8.2	22.0	5.20		
	October	11.0	24.8	65	283	6.6	19.6	4.52		
45	November	11.4	23.5	70	260	6.4	18.8	4.02		
CWR	December	10.1	24.6	62	292	7.2	19.6	4.58		
	Average	10.6	24.9	62	307	7.7	20.5	4.74		

Determination of crop water requirements and irrigation requirements using CROPWAT 8.0

*	Station LAIKIPIA AIRBASE	Ef	f. rain method U	SDA S.C.
Climate/ETo		Rain	Eff rain	
		mm	mm	
0	January	29.4	28.0	
111	February	14.2	13.9	
nain	March	47.9	44.2	
	April	114.7	93.7	
ي ا	May	75.9	66.7	
Сгор	June	43.7	40.6	
•	July	59.9	54.2	
	August	70.5	62.5	
1	September	52.6	48.2	
Soil	October	77.6	68.0	
	November	80.6	70.2	
	December	40.0	37.4	
V	Total	707.0	627.6	

C	Soil name RED SANDY LOAM	
General soil data	Total available soil moisture (FC - WP) 140.0	mm/meter
	Maximum rain infiltration rate 30	mm/day
	Maximum rooting depth 900	centimeters
	Initial soil moisture depletion (as % TAM)	%
	Initial available soil moisture 140.0	mm/meter

			Crop Planting date	MAIZE
Climate/ETo				101710
Month Decade Stage Kc ETc ETc	Eff rain	Irr. Req.		
Coeff mm/day mm/dec	mm/dec	mm/dec		
Bain Oct 1 Init 0.30 1.34 13.4	21.0	0.0		
Oct 2 Init 0.30 1.29 12.9	23.5	0.0		
Oct 3 Deve 0.47 1.91 21.0	23.4	0.0		
Nov 1 Deve 0.75 2.92 29.2	24.3	4.9		
Crop Nov 2 Deve 1.03 3.77 37.7	25.1	12.6		
Nov 3 Mid 1.25 4.78 47.8	20.9	27.0		
Dec 1 Mid 1.26 5.11 51.1	15.4	35.7		
We Dec 2 Mid 1.26 5.29 52.9	11.4	41.4		
Soil Dec 3 Mid 1.26 5.61 61.7	10.7	51.0		
Jan 1 Late 1.18 5.53 55.3	10.5	44.8		
Jan 2 Late 0.88 4.37 43.7	9.5	34.2		
V Jan 3 Late 0.56 2.95 32.4	7.9	24.5		
CWR Feb 1 Late 0.37 2.07 4.1	1.0	4.1		
463.3	204.6	280.2		
送				
Schedule				
Crop Pattern				
Scheme				

₩ Climate/ETe	ETo station LAIKIPIA AIRBASE Rain station LAIKIPIA AIRBASE				Crop Soi	MAIZE	NDY LOAN	4	Planting date 01/10 Harvest date 02/02			Yield red.
Rain	Table format Table format Table format Table format				T Applic Fiel	rigate at cri Refill soil to f 10 %	tical depletic ield capacity	y				
	Date	Day	Stage	Rain	Ks	Eta	Depl	Net Irr	Deficit	Loss	Gr. Irr	Flow
				mm	fract.	%	%	mm	mm	mm	mm	l/s/ha
Crop	10 Dec	71	Mid	0.0	1.00	100	56	78.7	0.0	0.0	112.4	0.18
	29 Dec	90	Mid	0.0	1.00	100	57	80.2	0.0	0.0	114.6	0.70
	29 Jan	121	End	0.0	1.00	100	77	107.4	0.0	0.0	153.5	0.57
*	2 Feb	End	End	0.0	1.00	0	6					
CWR	Totals	Ac Pote	Total gra Total r Total irrig tual water ntial water	oss irrigati net irrigati jation loss use by cr use by cr	ion 380. ion 266. ;es 0.0 ;op 461. op 461.	5 mm 3 mm mm 2 mm 2 mm		Moi Actual im	Tot Effectiv Tota st deficit a igation red	al rainfall ve rainfall I rain loss at harvest quirement	227.5 186.9 40.6 8.0 274.3	mm mm mm mm mm

*	Crop Name TOMATO	Planting date 01/10	Harvest 22/02
Climate/ETo		1.15	
R	Values - 0.60		0.80
Rain	Stage initial (days) 30	development mid-season k 40 45	ate season total 30 145
Crop	0.25 Rooting depth (m)	1.00	
tie Soil	Critical depletion (fraction) Yield response f. 0.50 Cropheight (m)	0.40 0.60 1.10 0.60 (optional)	0.50

¥ Climate/ETo	ETo sta Rain sta	ition LAIKIPIA	AIRBASE AIRBASE					
	Month	Decade	Stage	Kc	ETc	ETc	Eff rain	Irr. Req.
0				coeff	mm/day	mm/dec	mm/dec	mm/dec
111	Oct	1	Init	0.60	2.69	26.9	21.0	5.9
Hain	Oct	2	Init	0.60	2.57	25.7	23.5	2.3
	Oct	3	Deve	0.60	2.47	27.2	23.4	3.8
3	Nov	1	Deve	0.70	2.70	27.0	24.3	2.8
Сгор	Nov	2	Deve	0.85	3.11	31.1	25.1	6.1
	Nov	3	Deve	1.00	3.85	38.5	20.9	17.6
	Dec	1	Mid	1.15	4.66	46.6	15.4	31.2
1	Dec	2	Mid	1.21	5.05	50.5	11.4	39.1
Soil	Dec	3	Mid	1.21	5.36	59.0	10.7	48.3
	Jan	1	Mid	1.21	5.67	56.7	10.5	46.2
	Jan	2	Mid	1.21	5.98	59.8	9.5	50.3
1	Jan	3	Late	1.17	6.14	67.5	7.9	59.6
CWR	Feb	1	Late	1.06	6.00	60.0	4.8	55.2
	Feb	2	Late	0.95	5.71	57.1	2.5	54.6
INN	Feb	3	Late	0.88	5.02	10.0	1.6	10.0
Schedule						643.7	212.6	432.8

	ETo	station	LAIKIPIA AII	RBASE	Cro	p TOMA	0		Planting	date 01/	10	Yield red
	Rain	station	LAIKIPIA AH	RBASE	So	Soil RED SANDY LOAM Harvest date 22/02						
	Table forr • Irriga	nat ation sch	edule		415	Timing: Irrigate at critical depletion						
₩ Rain	C Daily	y soil moi	sture balar	nce	Fie	Field eff. 70 %						
	Date	Day	Stage	Rain	Ks	Eta	Depl	Net Irr	Deficit	Loss	Gr. Irr	Flow
3				mm	fract.	%	%	mm	mm	mm	mm	l/s/ha
Crop	10 Dec	71	Mid	0.0	1.00	100	42	58.2	0.0	0.0	83.1	0.14
	25 Dec	86	Mid	0.0	1.00	100	43	59.8	0.0	0.0	85.5	0.66
	8 Jan	100	Mid	0.0	1.00	100	44	61.1	0.0	0.0	87.3	0.72
*	20 Jan	112	Mid	0.0	1.00	100	44	61.2	0.0	0.0	87.4	0.84
Soil	1 Feb	124	End	0.0	1.00	100	47	65.3	0.0	0.0	93.3	0.90
	14 Feb	137	End	0.0	1.00	100	50	70.7	0.0	0.0	101.0	0.90
1	22 Feb	End	End	0.0	1.00	0	27					
CWR												
Schedule	Totals	:	Total gro Total Total irrig	oss irrigat net irrigat jation los:	ion 537 ion 376 ses 0.0	.4 mm .2 mm mm			Tot Effectiv Tota	al rainfall ve rainfall rain loss	234.8 224.5 10.3	
		Ac Pote Efficie	stual water ntial water ncy irrigati	use by c use by c ion sched	rop 638 rop 638 ule 100	2.7 mm 2.7 mm 2.0 %		Moi Actual in	st deficit a igation re Effici	it harvest quirement ency rain	38.1 414.3 95.6	mm
Crop Pattern	_ Yield	Deficie reduction	ncy irrigati Is	on sched	ule 0.0	%						•
Scheme												

¥ Climate/E⊺o	ETo st Rain sta	ation LAIKIPIA ation LAIKIPIA	AIRBASE						Crop POTATO Planting date 01/10
	Month	Decade	Stage	Kc	ETc	ETc	Eff rain	Irr. Req.	7
0				coeff	mm/day	mm/dec	mm/dec	mm/dec	
NTI Rain	Oct	1	Init	0.50	2.24	22.4	21.0	1.4	
nam	Oct	2	Init	0.50	2.14	21.4	23.5	0.0	
	Oct	3	Deve	0.54	2.24	24.6	23.4	1.2	
.	Nov	1	Deve	0.77	2.97	29.7	24.3	5.4	
Сгор	Nov	2	Deve	1.00	3.66	36.6	25.1	11.5	
	Nov	3	Mid	1.18	4.54	45.4	20.9	24.5	
	Dec	1	Mid	1.20	4.84	48.4	15.4	33.0	
*	Dec	2	Mid	1.20	5.01	50.1	11.4	38.7	
Soil	Dec	3	Mid	1.20	5.31	58.5	10.7	47.7	
	Jan	1	Late	1.19	5.60	56.0	10.5	45.5	
.	Jan	2	Late	1.10	5.46	54.6	9.5	45.1	
*	Jan	3	Late	0.97	5.09	56.0	7.9	48.1	
LWH	Feb	1	Late	0.86	4.86	34.0	3.4	29.3	
						537.7	206.9	331.4	
Mage Schedule									
🐝 Crop Pattern									
₩ Scheme									

512	ETo	station	LAIKIPIA AII	RBASE	Cro	POTA	то		Planting	date 01/1	0	Yield red.
;∕: Climate/ETo	Rain	station	LAIKIPIA AII	RBASE	Sa	oil RED 9	SANDY LOAM	1	Harvest	date 07/0)2	0.0 %
Rain	 Table form ● Irriga ○ Daily 	nat ation sche v soil mois	edule sture balar	nce	Appli Fic	Timing: cation: eld eff.	Irrigate at crit Refill soil to fi 70 %	ical depletic eld capacity	in /			
	Date	Day	Stage	Rain	Ks	Eta	Depl	Net Irr	Deficit	Loss	Gr. Irr	Flow
				mm	fract.	%	%	mm	mm	mm	mm	l/s/ha
Crop	12 Oct	12	Init	0.0	1.00	100	26	13.2	0.0	0.0	18.9	0.18
	21 Nov	52	Dev	0.0	1.00	100	31	25.2	0.0	0.0	36.0	0.10
	1 Dec	62	Mid	0.0	1.00	100	35	29.3	0.0	0.0	41.8	0.48
*	9 Dec	70	Mid	0.0	1.00	100	30	25.4	0.0	0.0	36.3	0.53
Soil	16 Dec	77	Mid	0.0	1.00	100	34	28.9	0.0	0.0	41.3	0.68
	21 Dec	82	Mid	0.0	1.00	100	30	25.3	0.0	0.0	36.2	0.84
45	28 Dec	89	Mid	0.0	1.00	100	31	26.3	0.0	0.0	37.5	0.62
CWR	2 Jan	94	Mid	0.0	1.00	100	32	27.1	0.0	0.0	38.8	0.90
	8 Jan	100	Mid	0.0	1.00	100	33	28.1	0.0	0.0	40.1	0.77
DEN	15 Jan	107	End	0.0	1.00	100	40	33.5	0.0	0.0	47.9	0.79
Cabada a	24 Jan	116	End	0.0	1.00	100	46	38.6	0.0	0.0	55.1	0.71
Schedule	2 Feb	125	End	0.0	1.00	100	49	41.2	0.0	0.0	58.9	0.76
	7 Feb	End	End	2.4	1.00	100	20					
Crop Pattern	Totals	:	Total gro Total Total irrig	oss irrigat net irrigat jation loss	ion 488 ion 342 ses 0.0	8.8 mm 2.2 mm mm			Tot Effectiv Tota	al rainfall ve rainfall rain loss	232.3 173.7 58.7	mm A mm V
Scheme												

	ETo station LAIKIPIA AIRBASE Rain station LAIKIPIA AIRBASE	Crop F Soil F	OTATO ED SANI)Y LOAM	P H	lanting date	01/10 07/02	Yield red.
Rain	Table format Irrigation schedule Daily soil moisture balance	Timii Applicatio Field e	ng: Irrig on: Ref eff. 70	ate at critic Il soil to fie &	cal depletion Id capacity			
📌 Crop	Totals Total gross irrigation Total net irrigation Total irrigation losses Actual water use by crop	488.8 342.2 0.0 532.9	mm mm mm		Moist d	Total rain Effective rain Total rain l Ieficit at bary	fall 232. ífall 173. oss 58.7	.3 mm .7 mm 7 mm
🐞 Soil	Potential water use by crop Potential water use by crop Efficiency irrigation schedule Deficiency irrigation schedule	532.9 532.9 100.0 0.0	mm % %		Actual irriga	tion requirem	ent 359. ain 74.7	.2 mm 7 %
V CWR	Yield reductions Stagelabel	A		3	C	D	Season	
Schedule	Reductions in ETc Yield response factor Yield reduction Cumulative yield reduction	0.0 0.45 0.0 0.0	0 0 0 0	.0 .80 .0 .0	0.0 0.80 0.0 0.0	0.0 0.30 0.0 0.0	0.0 1.10 0.0	% % %
👯 Crop Pattern								

		Сгоррі	ng pattern	name				
; <u>;</u> Climate/ETo	No.	Crop file		Crop name	Planting date	Harvest date	Area %	
	1. D:\CLI	MWAT PROJECT\maize.CRO		MAIZE	01/10	02/02	50	-
Rain	2. D:\CLI	IMWAT PROJECT\tomato.CR0		TOMATO	01/10	22/02	25	
main	3. D:\CLI	IMWAT PROJECT\potato.CRO		POTATO	01/10	07/02	25	
3	4.				07/05			
Сгор	5.				07/05			
	6.				07/05			
*	7.				07/05			
Soil	8.				07/05			
A0 .	9.				07/05			
CWR	10.				07/05			
	11.				07/05			
2	12.				07/05			
Schedule	13.				07/05			
	14.				07/05			
V Crop Pattern	15.				07/05			
	16.				07/05			
	17				07/05			-
Scheme								

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Jun Jun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0 11.9 2.6	44.5 26.5 41.5	128.1 118.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 	0.0	0.0 0.0 0.0	0.0 11.9 2.6	44.5 26.5 41.5	128.1 118.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00	0.0 0.0 0.0 0.0 	0.0	0.0	11.9 2.6	26.5	118.6
0.0 0.0	0.0 0.0 	0.0	0.0	2.6	41.5	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0				41.0	119.4
0.0 0.0 0.0 0.0 0.00 0.00	0.0 0.0					
0.0 0.0 0.0 0.0 0.00 0.00	0.0 0.0					
0.0 0.0 0.00		0.0	0.0	0.1	1.3	4.0
0.00 0.00	0.0 0.0	0.0	0.0	3.6	39.2	123.5
	0.00 0.00	0.00	0.00	0.01	0.15	0.46
0.0 0.0	0.0 0.0	0.0	0.0	50.0	100.0	100.0
0.00 0.00	0.00 0.00	0.00	0.00	0.03	0.15	0.46
	0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.03	0.00 0.00 0.00 0.00 0.00 0.03 0.15

APPENDIX 8: SELECTION CHARTS

A WATER PIPE SIZING CHART FOR PLASTIC (PVC) PIPES

(Source: Dankoff Solar, Pipe Sizing Chart (Water) http://www.affordable-solar.com/Learning-Center/Water-Pumping/pipe-sizing-chart)

		DIOC	C 1- 1	(EDT	0.41	FEET					f nin	
	0	or VER		MET	ERS p	per HU	Der H JNDR	ED ME	ED F ETER hes)	Sofp	oipe	e
FLO	ow TE	1/2*	3/4	1	1 1/4	1 1/2	2	21/2	3	4	5	6
GPM	LPM	.662	.82	1.05	1.38	1.61	2.07	2.47	3.07	4.03	5.05	6.06
1	3.8	1.13	0.14	0.05	0.02	220	10		actu	al Inside	Diameter	(inches)
2	7.6	4.16	0.35	0.14	0.05	0.02	3				<u>.</u>	
3	11	8.55	2.19	0.32	0.09	0.05		*				
4	15	14.8	3.70	0.53	0.16	0.09	0.02		. 1	NOTE: S	naded v	alues are
5	19	22.2	5.78	0.81	0.25	0.12	0.04	*	÷ *	it velociti	es over	b feet pe
6	23	31.0	7.85	1.00	0.35	0.18	0.07	0.02	1.	second	and with o	aution
7	27		10.6	1.52	0.46	0.23	0.08	0.03	(*) -	Selecte	u with c	aution.
8	30	8.C	13.4	1.94	0.58	0.30	0.09	0.05				
9	34	10	16.9	2.43	0.72	0.37	0.12	0.06	20		*	• 5
10	38	53	20.3	2.93	0.88	0.46	0.16	0.07	0.02	12	8	50
11	42	¥3	24.3	3.51	1.04	0.53	0.18	0.08	0.03			÷
12	46	1	28.6	4.11	1.22	0.65	0.21	0.09	0.04		10	10
14	53	1.1	104 C	5.47	1.64	0.85	0.28	0.12	0.05	÷*	345	411
10	61	10	•	7.02	2.10	1.09	0.37	0.14	0.06	8	*	懿
18	68	23	•	8.73	2.61	1.34	0.46	0.18	0.07			
20	10	89	200	10.6	3.16	1.64	0.55	0.21	0.08	0.02	1.5	12
22	83	10	1851	13.3	3.19	2.21	0.57	0.20	0.09	0.03	÷.	
24	00	¥.:		14.9	5 15	2.31	0.79	0.30	0.14	0.04		* P
2.8	106	1	1.1	1	5.01	3.05	1 04	0.42	0.16	0.05		
30	114	·			6.72	3.46	1.18	0.46	0.18	0.06		
35	133	2		÷.	8.94	4.62	1.57	0.62	0.23	0.07		22
40	152	•		10	11.0	5.91	1.99	0.79	0.30	0.09	0.02	2.0
45	171				14.2	7.37	2.49	0.97	0.37	0.12	0.04	22
50	190				17.3	8.96	3.03	1.20	0.46	0.14	0.05	
55	208			ar i		10.7	3.60	1.43	0.55	0.16	0.06	
60	227			ě.	2	12.5	4.23	1.66	0.65	0.18	0.07	0.02
6 5	246	- L		-	30 C	14.5	4.90	1.94	0.74	0.22	0.08	0.03
70	265	* NOT	E- 1/2*		2	16.7	5.64	2.22	0.85	0.25	0.09	0.04
75	284	data ar	anline to			19.0	6.40	2.52	0.97	0.28	0.10	0.05
80	303	PE nin	e only			1.00	7,21	2.84	1.09	0.32	0.12	0.06
85	322	PVC has	e emailer				8.06	3.19	1.22	0.37	0.13	0.07
90	341	ID of	612"			1995	8.96	3.53	1.36	0.39	0.14	0.08
95	360	10 01	.012	਼		- C.	9.91	3.90	1.50	0.44	0.16	0.09
100	379	20 E	S 🔹 S	10		363	10.9	4.30	1,66	0.49	0.18	0.12
150	569	•				1.1	23.1	9.10	3.51	1.04	0.37	0.16
200	758							15.5	5.98	1.76	0.62	0.28

NOMINAL	OUTSIDE	w	ALL THIC	KNESS (m	m)	PER 6 /	METRE EFF	ECTIVE LE	NGTH	IMPERIAL
DIAMETRE (mm)	DIAMETRE (mm)	CLASS B	CLASS C	CLASS D	CLASS E	CLASS B	CLASS C	CLASS D	CLASS E	SIZE (inch)
D25	25.2			1.6	1.8				1.2	3/4
D32	32.0		1.6	1.9	2.35			1.6	1.9	1
D40	40.2		1.8	2.4	2.85		1.9	2.5	3.0	1 ¹ / ₄
D50	50.2	1.6	2.2	2.9	3.5	2.1	3.0	3.8	4.6	$1^{1}/_{2}$
D63	63.2	1.9	2.8	3.6	4.45	3.3	4.7	6.1	7.4	2
D75	75.2	2.2	3.3	4.2	5.15	4.6	6.7	8.5	10.2	$2^{1}/_{2}$
D90	90.2	2.7	3.9	5.1	6.2	6.7	9.6	12.2	14.8	3
D110	110.2	3.3	4.8	6.1	7.55	10.0	14.3	18.4	22.2	4
D160	160.3	4.7	6.8	8.9	10.95	29.5	42.2	54.9	66.4	6
D200	200.3	5.2	7.6	10.0	12.3	37.6	53.7	69.1	83.9	7
NOTE: Maxi Pressure Rat	mum ings	Class B = Class C =	6 Bar 9 Bar	Class D = Class E =	12 Bar 15 Bar					

PVC pipe technical specifications (Davis & Shirtliff product catalogue)

TABLE 3: PVC PIPE SPECIFICATIONS

ΡV	' module technical data	(source: Davis & Shirtliff 2014	product catalogue)
1 V			product catalogue

Model	Туре	Rated Power	Nominal Voltage	Peak Voltage	Open Short Circuit Circuit VoltageCurrent		Number of	Dimensions (mm)				Weight (kg)				
		(W)	(V)	(V)	(V)	(A)	Cells	Α	В	C	D	E	F			
YL20	Multicrystalline	20	12	17.5	21	1.3	36	610	291	309	256	149	25	2.5		E
YL40	Multicrystalline	40	12	17.9	21.5	2.41	36	660	540	279	625	130	25	6		
YL50	Multicrystalline	50	12	17.5	22	3.1	36	800	541	400	506	200	35	6		
YL65	Multicrystalline	65	12	17.5	22	4.1	36	770	660	389	626	190	35	8		
YL85	Multicrystalline	85	12	17.5	22	5.1	36	1171	540	592	507	290	35	8	^	c
SW80	Polycrystalline	80	12	17.9	21.9	4.8	36	958	680	640	640	159	34	8		
YL125	Multicrystalline	125	12	17.5	22	7.89	36	1470	680	870	646	300	35	12	P	°.⊥
SW130	Polycrystalline	130	12	17.4	21.5	7.9	36	1508	680	880	640	314	34	12		
YL160	Multicrystalline	160	24	34.5	43	5.17	72	1182	990	682	956	250	35	14		
SW175	Polycrystalline	175	24	35.8	44.4	5.3	72	1610	810	1100	761	255	31	15		
YL195	Multicrystalline	195	24	36.7	45.4	5.65	72	1310	990	770	955	270	35	14		
YL280	Multicrystalline	280	24	35.5	45	8.35	72	1970	990	1154	946	408	50	27	I	-

Charge controller technical specification (Davis & Shirtliff 2014 Product catalogue)

	SUN	AYA		STE	CA				OPTI		
	Apple 10	Apple 15	Solarix PRS 2020	Solarix PRS 3030	PR 3030	Tarom 4545-48	SC 105M	SC 155M	SC 20SM	SC 50 MPPT	SC 80 MPPT
Max. Module Current	10A	15A	20A	30A	30A	45A	10A	15A	20A	50A	80A
Nominal Battery Voltage	120	′DC	12/24 12/24VDC 12/24 48VDC		12/24VDC			12-48VDC			
Input Voltage	120	/DC		12/24VDC 12/24 48VDC 12/24VDC		12/24VDC			140	VDC	
Self Consumption	4n	nA	4 r	nА	13mA	30mA	13mA		14		mA
Max PV Array Power (Watts)	24	10		900		2400	120/240	180/360	240/480	3250	5200
Low Voltage Disconnect (LVD)	11.	.5V	11.2-1	1.6V(22.4	23.2V)	46.8V	10.8-1	1.9V(21.6	-23.8V)	(11.5/22	.4/44.4)V
Reconnection Voltage (LVR)	12.	.7V	12.4V-1	12.7 (24.8)	-25.4V)	50V	12-1	3.2V(24-2	6.4)V	(12.4/24	.6/50.4)V
Display		LE	Ð		L	CD		LED		LC	D
IP Rating	IP	30		IP 32		IP 31		IP 67		IP	20
Dimensions (mm)	1200	ðx40		187x96x45	5	218x134 x65	85x70 x20	85x8	5x20	268x196 x147	415x225 x147
Weight (kg)	0.1	24		0.35		0.8	0.2	0.	21	4.3	7.1

Shurflo Pumps (courtesy of Davis and Shirtliff 2014 product manual)

Price list for the SFPP model 3020 pump (source:

DC PV DIRECT										
Solar Force Piston Pump 3020-12PV	12	PV	70	075-04273	\$2660	BuyNow				
Solar Force Piston Pump 3040-12PV	12	PV	70	075-04287	\$2793	BuyNow				
Solar Force Piston Pump 3020-24PV	24	PV	70	075-04277	\$2649	BuyNow				
Solar Force Piston Pump 3040-24PV	24	PV	70	075-04291	\$2619	BuyNow				
Solar Force Piston Pump 3020-48PV	48	PV	70	075-04281	\$2637	BuyNow				
Solar Force Piston Pump 3040-48PV	48	PV	70	075-04295	\$2608	BuyNow				

Image of the solar force piston pump (source:

APPENDIX 8: SYSTEM LAYOUT

Technical specifications of the Solar Force Piston Pumps (source: 2015 solar products catalogue

by Linda and Terry Wolff retrieved from http://solar-

catalog.com/pumps_surface.html#Shurflo_Pump_Accessories)

		м	odel 301	10	м	odel 302	20	Model 3040			
Vertical	Pressure (PSI)	Ba	attery Or	nly	PV	or Batt	ery	PV	or Batte	ery	
	(1 01)	GPM	LPM	Watts	GPM	LPM	Watts*	GPM	LPM	Watts*	
20	8.7	5.9	22.3	77	5.2	19.7	110	9.3	35.2	168	
40	17.4	5.6	21.3	104	5.2	19.7	132	9.3	35.2	207	
60	26.0	5.3	20.2	123	5.1	19.2	154	9.2	34.9	252	
80	35.0	5.2	19.7	152	5.1	19.2	182	9.2	34.9	286	
100	43.0	5.1	19.2	171	5	18.9	202	9.1	34.5	322	
120	52.0	4.9	18.7	200	5	18.9	224	9.1	34.5	364	
140	61.0	4.9	18.7	226	5	18.9	252	9.1	34.5	403	
160	70.0				4.9	18.6	269				
180	78.0				4.9	18.6	280				
200	86.0				4.8	18.2	308				
220	95.0				4.7	17.8	314				

Watts listed is pump power used. For array direct operation array must be at least 20% larger

APPENDIX 9: BUDGET

ACTIVITY	ACTIVITY	ESTIMATED COSTS
NO.		(ksh)
1.	Travel costs	850
2.	Communication	1000
3.	Stationery	1000
4.	Documentation	1500
	TOTAL	= 6200

APPENDIX 10: WORK SCHEDULE

	ACTIVITY	WEEK NUMBER (16/02/2015 – 29/05/2015)														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Preparation of															
1	project proposal															
	Submit project															
2	proposal															
	Project proposal															
3	presentation															
4	Site visit															
	Acquisition of															
5	secondary data															
	Data analysis and															
6	documentation															
	Development of															
7	alternative designs															
	Selection of															
	optimal design															
	based on															
8	performance															
	Testing and re-															
9	designing															
10	Cost analysis															
	Submit draft															
11	project report															
	Submit final															
12	project report															